Tetrahedron Letters, Vol.24, No.46, pp 5089-5090, 1983 0040-4039/83 \$3.00 + .00 Printed in Great Britain © 1983 Pergamon Press Ltd.

1,4-ADDITION OF GRIGNARD REAGENTS AND 1,6-ADDITION OF LITHIUM ORGANOCUPRATES TO N,N-DIETHYLSORBAMIDE

F. BARBOT, A. KADIB-ELBAN and Ph. MIGINIAC

Laboratoire de Chimie des Organométalliques. Groupe de Recherches de Chimie Organique. Université de Poitiers. 86022 POITIERS, France.

Summary: When they react with N,N-diethylsorbamide, saturated and allylic Grignard reagents give γ,δ -ethylenic amides (1,4-addition) whereas saturated and allylic lithium organocuprates give β,γ -ethylenic amides (1,6-addition).

During the course of a study on the reactivity of α , β - γ , δ -unsaturated carbonyl compounds with organometallics, we have studied the case of N,N-diethylsorbamide CH₃-CH=CH-CH=CH-CO-N(C₂H₅)₂; we report here the results we have obtained with Grignard reagents and with lithium organocuprates.

Three types of compounds can be formed when an organometallic RM reacts with N, N-diethylsorbamide:

$$\begin{array}{c} \text{CH}_{3}-\text{CH}=\text{CH}-\text{CH}-\text{CH}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ + \text{RM} \end{array} \xrightarrow{1} \begin{array}{c} \text{CH}_{3}-\text{CH}=\text{CH}-\text{CH}(\text{R})-\text{CH}_{2}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ \frac{2}{2} \begin{array}{c} \text{CH}_{3}-\text{CH}(\text{R})-\text{CH}=\text{CH}-\text{CH}_{2}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ \frac{3}{2} \begin{array}{c} \text{CH}_{3}-\text{CH}(\text{R})-\text{CH}=\text{CH}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ \frac{3}{2} \begin{array}{c} \text{CH}_{3}-\text{CH}(\text{R})-\text{CH}_{2}-\text{CH}=\text{CH}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ \end{array} \end{array} \xrightarrow{1} \begin{array}{c} \text{(1,4-addition)} \\ \frac{3}{2} \begin{array}{c} \text{CH}_{3}-\text{CH}(\text{R})-\text{CH}_{2}-\text{CH}-\text{CH}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ \end{array} \xrightarrow{1} \begin{array}{c} \text{(1,4-addition)} \\ \frac{3}{2} \begin{array}{c} \text{CH}_{3}-\text{CH}(\text{R})-\text{CH}_{2}-\text{CO}-\text{N}(\text{C}_{2}\text{H}_{5})_{2} \\ \end{array} \end{array}$$

<u>Grignard reagents</u>: The reaction of a Grignard reagent with an α , β -ethylenic N, N-disubstituted amide gives a saturated amide (1,4-addition)(1-3):

 $R'-CH=CH-CO-NR''_{2} + RMgX \longrightarrow R'-CH(R)-CH_{2}-CO-NR''_{2}$

The only known example of a reaction with an α , β - γ , δ -diethylenic N, N-disubstituted amide is the reaction of C₂H₅MgBr with N, N-diethylsorbamide (4): the γ , δ -ethylenic amide <u>1</u> (R= C₂H₅) corresponding to a 1,4-addition was obtained.

We tried to carry out this type of reaction with other organomagnesium compounds (table 1): in every case we obtained the γ , δ -ethylenic amide <u>1</u> corresponding to a 1,4-addition (5). When α , β -ethylenic Grignard reagents R-CH=CH-CH₂MgBr are used, the reaction proceeds with rearrangement (entries 7,8, table 1). The yield is rather low from a saturated organomagnesium compound and fairly good from allylic Grignard reagents. Untractable mixtures of products were obtained from CH₂=CH-CH₂MgBr/ether and C₆H₅MgBr/ether. No reaction was observed from CH₃MgI/ether, CH₃O-CH₂-C≡CMgBr/ether and (CH₃)₃Si-CH₂MgCl/ether (8).

Lithium organocuprates R_2 CuLi: With these reagents, the only product formed is the β , γ -ethylenic amide 2 arising from a 1,6-addition; no α , β ethylenic isomer was detected by NMR (table 2). The yield is low from a saturated lithium organocuprate and fairly good from an α , β -ethylenic lithium organocuprate; with the latter type of cuprate, the reaction

Tabl	е	1
------	---	---

Table 2

$\frac{1}{RMgBr} + CH_3 - CH = CH - CH = CH - CO - N(C_2H_5)_2$ $\frac{20°C}{2} CH_3 - CH = CH - CH(R') - CH_2 - CO - N(C_2H_5)_2$				$R_2CuLi + CH_3$ -CH=CH-CH=CH-CO-N(C ₂ H ₅) ₂ -60°C CH ₃ -CH(R')-CH=CH-CH ₂ -CO-N(C ₂ H ₅) ₂				
Ent	ry R	Yield ^a	b.p.(°C/torr)	Entry	R	Yield ^a	b.p.(°C/torr)	
1	nC ₃ H ₇	53	85/0.05	9	nC ₃ H ₇	30	88/0.05	
2	iC ₃ H ₇	55	101/0.5	10	nC ₄ H ₉	40	106/0.05	
3	nC ₄ H ₉	48	94/0.05	11	nC ₅ H ₁₁	35	130/0.1	
4	iC ₄ H ₉	35	91/0.05	12 CH ₂	=С(СН ₃)-Сн	2 55	115/0.1	
5	nC ₅ H ₁₁	42	114/0.1	•	-сн=сн-сн	~ h(15)	130/1.5	
6	nC ₇ H ₁₅	42	132/0.01	14 C ₂ H	-CH=CH-CH	2 67 ^C	125/0.1	
7 (сн _а -сн=сн-сн	, 60 ^b	106/0.07		5	-		
	₂ н ₅ -сн=сн-сн		108/0.05					

^aR'= R unless otherwise mentioned.^DR'= CH₂=CH-CH(CH₃).^CR'= CH₂=CH-CH(C₂H₅).

proceeds with rearrangement (entries 13, 14, table 2). The cuprate $(CH_3)_2CuLi$ proved unreactive with N,N-diethylsorbamide: the starting amide was recovered.

The 1,6-conjugate addition we have observed is similar to the 1,6-conjugate addition which occurs when lithium organocuprates are reacted with conjugated dienoates (11-13) and with 3,5-heptadiene 2-one (14):

 $\label{eq:ch_3-CH_CH_CH_CH_CH_CH_CH_CH_3} + R_2 \text{CuLi} \longrightarrow \text{CH}_3-\text{CH}(\text{R})-\text{CH}_2-\text{CH}-\text{CH}_2-\text{CO-CH}_3$ All compounds obtained in this work showed satisfactory analytical data.

References and notes

(Received in France 21 July 1983)

1	M.S.KHARASCH, O.REINMUTH, Grignard Reactions of Nonmetallic Substances, Prentice-Hall, Englewood Cliffs, New Jersey, 1954, p. 875.
2	S.T.IOFFE, A.N.NESMEYANOV, The Organic Compounds of Magnesium, Beryllium,
	Calcium, Strontium and Barium, North Holland Publishing Cy, Amsterdam, 1976, p. 399.
3	K.NUTZEL in "Methoden der Organischen Chemie", E.MULLER Ed., Vol. 13/2a, Georg Thieme Verlag, Stuttgart, 1973, p. 375.
4	Th.CUVIGNY, H.NORMANT, Bull.Soc.Chim.Fr., (1961) 2423.
5	In a similar way, N,N-dimethylthiosorbamide CH ₃ -CH=CH-CH=CH-CS-N(CH ₃) ₂
	reacts with nC_4H_9Li/THF , $C_2H_5MgBr/ether$ (6) and $CH_2=CH-CH_2Li/THF$ (7)
6	to give 1,4-addition products. Y.TAMARU, T.HARADA, H.IWAMOTO, Z.YOSHIDA, J.Amer.Chem.Soc., (1978) <u>100</u> 5221.
7 8	Y.TAMARU, T.HARADA, S.NISHI, Z.YOSHIDA, Tetrahedron Lett., (1982) 23 2383 In the same way, no reaction was observed with $nC_4H_9-C\equiv CLi/ether$,
	$CH_2 = CH - CH_2AI_{2/3}Br/ether$ (9) and $LiCH_2 - COOC_2H_5/liq \cdot NH_3$ (10).
9	M.GAUDEMAR, Ann.Chim., (1956) [13], 1 161.
10	W.R.DUNNAVANT, C.R.HAUSER, J.Org.Chem., (1960) 25 503.
11	E.J.COREY, R.H.K.CHEN, Tetrahedron Lett., (1973) 1611.
12	Y.YAMAMOTO, S.YAMAMOTO, H.YATAGAI, Y.ISHIHARA, K.MARUYAMA, J.Org.Chem.,
	(1982) 47 119.
13	F.NAF, P.DEGEN, G. OHLOFF, Helv.Chim.Acta, (1972) 55 82.
14	F.BARBOT, A.KADIB-ELBAN, Ph.MIGINIAC, J.Organometal.Chem., (1983) to be
	published.
15	G.DAVIAUD, Ph.MIGINIAC, Tetrahedron Lett., (1973) 3345.